Genomic selection is a breeding method that uses genomic information to predict the performance of plants based on their genetic makeup. By analyzing large sets of genetic data, breeders can identify markers associated with desirable traits, allowing for more accurate and efficient selection of parent plants. This approach accelerates the breeding process, enabling the development of improved crop varieties in shorter timeframes. Genomic selection has significant implications for enhancing traits such as yield, disease resistance, and abiotic stress tolerance. The integration of genomic data into breeding programs represents a paradigm shift in agriculture, promoting sustainable practices and food security.
Title : Exploring the genetic diversity in tannin-rich forages to explain the large intra species variability in tannin content
Selina Sterup Moore, Aarhus University, Denmark
Title : Isolation and functional properties of biomolecules of plants and its application
Balagopalan Unni, GEMS Arts & Science College (Autonomous), India
Title : Primed for the future: PGPR and the promise of sustainable, heritable crop resilience
Prashant Singh, Banaras Hindu University (BHU), India
Title : Revealing allelic variations in candidate genes associated with grain yield under salinity stress between two contrasting rice genotypes
Nisha Sulari Kottearachchi, Wayamba University of Sri Lanka, Sri Lanka
Title : Adaptive strategies of Aristida L. species across ecological zones of Pakistan: Linking soil characteristics with morphological and physiological traits
Iram Ijaz, University of Agriculture Faisalabad Pakistan, Pakistan
Title : Ethnobotanical survey and abundance of weeds in selected Manihot esculenta (cassava) Crantz farms in Osun state, Nigeria
Dada Caleb Mayokun, University of Ibadan, Nigeria